

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Struktura energetyczna ciał stałych

Struktura kryształu

Doskonały kryształ składa się z uporządkowanych atomów w sieci krystalicznej, opisanej przez trzy podstawowe wektory translacji; $\vec{a}, \vec{b}, \vec{c}$ tak, że układ atomów pozostaje niezmieniony czy obserwujemy go z punktu $P(\vec{r})$ czy z punktu $P(\vec{r}')$ sieć+baza=struktura krystaliczna

Sieć krystaliczna

AGH

gdzie: n_1 , n_2 , n_3 są dowolnymi liczbami całkowitymi określonych dla wszystkich liczb całkowitych n_1 , n_2 , n_3 definiuje sieć krystaliczną

<u>Sieć:</u> jest regularnym i periodycznym układem punktów w przestrzeni Ze strukturą krystaliczną mamy do czynienia wówczas, gdy baza atomów jest przyporządkowana jednoznacznie do każdego węzła sieci.

Baza: składa się z jednego atomu dla najprostszych kryształów może być również 10⁵ atomów lub cząsteczek np. w białkach.

Sieć krystaliczna

Przekształcenie translacji sieci lub *przekształcenie translacji kryształu* definiuje się jako przesunięcie równoległe kryształu względem siebie o wektor **translacji kryształu T**

$$\vec{T} = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c}$$

Komórka prosta sieci:

Jest to równoległościan opisany przez wektory $\vec{a}, \vec{b}, \vec{c}$

Komórka prosta jest jednym z typów komórki elementarnej

Komórka elementarna:

stanowi przestrzeń powstałą z przekształceń translacji kryształu.

Komórka prosta stanowi najmniejszą jednostkę komórki elementarnej. Jeden węzeł sieci przypada na jedną komórkę prostą.

Pięć sieci dwuwymiarowych Bravais'go

Sieć	Umowna komórka elementarna	Parametry sieciowe komórki elementarnej
ukośnokątna	równoległobok	$a \neq b, \varphi \neq 90^o$
kwadratowa	kwadrat	$a = b, \varphi = 90^{\circ}$
heksagonalna	romb	$a = b, \varphi = 120^{\circ}$
prostokątna prosta	prostokąt	$a \neq b, \varphi = 90^{\circ}$
Prostokątna centrowana	prostokąt	$a \neq b, \varphi = 90^{\circ}$

A G H

Trójwymiarowe sieci Bravais'go

Istnieje czternaście rodzajów sieci trójwymiarowych, występujących w siedmiu układach krystalograficznych:

- układ regularny (ang. cubic) (sc-simple cubic, bcc-body centered cubic, fcc-face centered cubic)
- heksagonalny (prosty)
- jednoskośny (prosty, centrowany w podstawach)
- trójskośny (prosty)
- rombowy (prosty, centrowany w podstawie, w objętości bc, na ścianach fc)
- tetragonalny (prosty, centrowany w objętości)
- romboedryczny (prosty)

Energia potencjalna elektronu w krysztale

 $V(r) = -\frac{Zq^2}{4\pi\varepsilon r}$

Przyjmuje się, że energia potencjalna w krysztale zmienia się periodycznie w przestrzeni, dozwolone stany energetyczne są skwantowane, poziomy grupują się w pasma dozwolone oddzielone od siebie pasmami wzbronionymi.

Pasmowy model ciała stałego: model Kröniga-Penneya

Dlaczego pewne ciała są dobrymi przewodnikami, inne półprzewodnikami o własnościach elektrycznych w znacznym stopniu zależnych od temperatury a jeszcze inne izolatorami? Nie wynika to z modelu elektronów swobodnych.

Obserwuje się dużą różnicę między oporem typowego przewodnika metalicznego a izolatora:

opór czystego metalu w niskich temperaturach jest rzędu 10⁻¹⁰ Ω cm opór izolatora osiąga wartość 10²² Ω cm

Obserwowany przedział wartości oporu obejmujący 32 rzędy wielkości jest przypuszczalnie najszerszym przedziałem wartości powszechnie występującej właściwości ciała stałego.

Z modelu opisującego strukturę energetyczną ciała stałego wynika, że elektrony w kryształach znajdują się w pasmach energetycznych

Jednowymiarowy periodyczny potencjał; V₀ –wysokość bariery b – szerokość bariery.

(K. F. Brennan:,,The physics of semiconductor"1999)

Równanie Schrödingera dla tak przyjętego jednowymiarowego potencjału periodycznego ma następującą postać:

Dla: 1) 0< x < a (studnia): $-\frac{\hbar^2}{2m}\frac{d^2\varphi(x)}{dx^2} = E\varphi(x)$

2)
$$-b < x < 0$$
 (bariera) $-\frac{\hbar^2}{2m}\frac{d^2\varphi(x)}{dx^2} + V(x)\varphi(x) = E\varphi(x)$

Rozwiązaniem równania Schrödingera dla periodycznego potencjału są funkcje Blocha:

$$\varphi(x) = U_k(x) \exp(\pm ikx)$$

Szukamy $U_k(x)$ podstawiając postulowane rozwiązanie do równań Schrödingera w obszarach studni i bariery.

W obszarze (1) studni otrzymujemy:

$$U_{k1}(x) = A \exp[i(\alpha - k)x] + B \exp[-i(\alpha + k)x]$$

gdzie:
$$\alpha^2 = \frac{8\pi^2 m}{h^2} E = \frac{2m}{\hbar^2} E$$

W obszarze (2) bariery otrzymujemy:

$$U_{k2}(x) = C \exp[(\beta - ik)x] + D \exp[-(\beta + ik)x]$$

gdzie:
$$\beta^2 = \frac{8\pi^2 m}{h^2} (V_0 - E) = \frac{2m}{\hbar^2} (V_0 - E)$$

Stałe A, B, C i D znajdziemy z czterech równań, które zostaną zapisane przy wykorzystaniu własności funkcji falowych spełniających równanie Schrödingera:

a) ciągłość funkcji:

$$U_{k1}(x)\big|_{x=0} = U_{k2}(x)\big|_{x=0}$$

b) ciągłości pierwszych pochodnych:

$$\frac{dU_{k1}(x)}{dx}\Big|_{x=0} = \frac{dU_{k2}(x)}{dx}\Big|_{x=0}$$

c) periodyczności funkcji:

$$U_{ki1}(x)\Big|_{x=a} = U_{k2}(x)\Big|_{x=-b}$$

d) periodyczności pochodnych:

$$\frac{dU_{k1}(x)}{dx}\Big|_{x=a} = \frac{dU_{k2}(x)}{dx}\Big|_{x=-b}$$

Z warunków od a) do c) otrzymamy układ czterech równań jednorodnych na nieznane wartości A, B, C i D.

Taki układ równań posiada niezerowe rozwiązania, gdy wyznacznik utworzony ze współczynników przy niewiadomych A, B, C i D jest równy zero.

Ten warunek daje w efekcie równanie:

$$P\frac{\sin\alpha a}{\alpha a} + \cos(\alpha a) = \cos(ka)$$

gdzie P jest miarą energii wiązania elektronu w studni potencjału i jest zdefiniowane:

$$P = \lim_{b \to o, V \to \infty} \frac{\beta^2 a b}{2}$$

$$P = \lim_{b \to o, V \to \infty} \frac{\beta^2 ab}{2}$$

Taka definicja parametru P wynika z następujących własności potencjału V:

Potencjał V spełnia własności funkcji delty Diraca tzn. gdy b \rightarrow 0 to V $\rightarrow \infty$ tak, żeby β^2 b miało wartość skończoną

Równanie:
$$P \frac{\sin \alpha a}{\alpha a} + \cos(\alpha a) = \cos(ka)$$

jest relacją dyspersji dla tego zagadnienia i jest zarazem równaniem na nieznaną wartość α

Zgodnie z równaniem

$$\alpha^2 = \frac{8\pi^2 m}{h^2} E = \frac{2m}{\hbar^2} E$$

możemy wyliczyć wartości własne energii E, dla których istnieją funkcje falowe Blocha.

Analizując równanie:
$$P \frac{\sin \alpha a}{\alpha a} + \cos(\alpha a) = \cos(ka)$$

Prawa strona równania zawiera się w wartościach ± 1 natomiast lewa strona może przekraczać te wartości, należy określić zakres zmienności argumentu $\alpha a_{,}$ dla którego lewa strona równania będzie również zawarta w granicach ± 1 .

Dozwolone wartości energii E podane są przez zakresy, dla których funkcja zawiera się pomiędzy +1 i -1

Jak widać z przebiegu funkcji istnieją wartości αa, dla których lewa strona równania:

$$P\frac{\sin\alpha a}{\alpha a} + \cos(\alpha a) = \cos(ka)$$

jest zawarta w wymaganych granicach.

Wartości te wyznaczają zakres pasma energetycznego, w którym znajdują się dozwolone stany energetyczne, dla pozostałych wartości αa występuje **przerwa energetyczna**, tzw. **pasmo wzbronione** co oznacza, że te stany energetyczne nie mogą być obsadzone.

Z tej analizy wynika, że struktura energetyczna elektronów, znajdujących w obszarze działania periodycznego potencjału posiada charakter pasmowy, występują **pasma dozwolone i pasma wzbronione.**

Jak widać z ilustracji szerokość pasma dozwolonego wzrasta wraz ze wzrostem αa czyli ze wzrostem energii E. Szerokość pasma dozwolonego zależy od P i maleje wraz ze wzrostem P.

(na podstawie Kevin F. Brennan "The Physics of Semiconductors…" Cambridge 1999)

Przypadki w modelu Kröniga-Penneya

Z relacji dyspersji wynikają dwa skrajne, dyskutowane wcześniej przypadki:

a) elektron w studni potencjału o nieskończenie wysokich brzegach $P \rightarrow \infty$ pasma energetyczne stają się bardzo wąskie i widmo energii staje się liniowe.

Dla
$$P \rightarrow \infty$$
 $\sin \alpha a \rightarrow 0 \Rightarrow \alpha a = \pm n\pi$ bo:

 $P\frac{\sin(\alpha a)}{\alpha a}$

ma wartość skończoną i wówczas otrzymujemy:

$$\alpha^{2} = \frac{n^{2} \pi^{2}}{a^{2}} = \frac{8\pi^{2} m}{h^{2}} E$$

Z warunku:

$$\alpha^{2} = \frac{n^{2}\pi^{2}}{a^{2}} = \frac{8\pi^{2}m}{h^{2}}E$$

wynika, że wartości własne dla tego zagadnienia wynoszą:

$$E = n^2 \frac{h^2}{8ma^2}$$

b) Elektron swobodny $P \rightarrow 0$

wówczas wszystkie stany są dozwolone:

$$\cos(\alpha a) = \cos(ka) \Rightarrow \alpha = k$$

$$\alpha^2 = \frac{8\pi^2 m}{h^2} E = k^2$$
$$E = \frac{h^2}{8\pi^2 m} k^2$$

Dla $0 < P < \infty$ otrzymujemy przypadek pośredni, pasma energii dozwolonej przedzielone są pasmami wzbronionymi.

Źródło, książka: Jasprit Singh

AGH

"Smart Electronic Materials Fundamentals and Applications" University of Michigan 2005, strona 86

Figure 2.23: (a) Potential and electron probability value of a typical electronic wavefunction in a random material. (b) The effect of a periodic background potential on an electronic wavefunction. In the case of the periodic potential, $|\psi|^2$ has the same spatial periodicity as the potential. This puts a special constraint on $\psi(\mathbf{r})$ according to Bloch's theorem.

Strefy Brillouina

Dla wartości k zawartych między tymi, w których relacja dyspersji E(k) jest nieciągła, wszystkie wartości własne są dopuszczalne.

Wartości k zawarte między $-\pi/a$ oraz $+\pi/a$ wyznaczają **I-szą** strefę Brillouina.

Wartości k zawarte między $+\pi/a$ i $+2\pi/a$ oraz $-\pi/a$ i $-2\pi/a$ wyznaczają **II-gą strefę Brillouina.**

Można wykreślić krzywe stałej energii E = const. Gdy relacja dyspersji jest kwadratowa (E ~ k^2) to krzywe E=const są kołami. Przykład elektrony swobodne w modelu Fermiego.

Strefy Brillouina

Gdy elektrony poruszają się w polu zmiennego potencjału np. w sieci krystalicznej (potencjał periodyczny) to relacja dyspersji nie jest kwadratowa.

AG H

Strefy Brillouina

Przerwy pomiędzy wierzchołkiem dozwolonego pasma a dnem następnego wyższego pasma mogą być rozumiane jako wynik odbicia Bragga fali bieżącej opisującej elektron poruszający się w sieci.

Fala odbija się od barier i gdy jest spełniony warunek Bragga:

$$2a = n\lambda$$

 \frown

występuje interferencja konstruktywna.

Ale
$$\lambda = \frac{2\pi}{k}$$

Otrzymujemy $a = \frac{n\pi}{k}$

Strefy Brillouina

Wartości k, dla których pojawiają się przerwy w E(k) są dokładnie tymi wartościami liczby falowej, dla których długość fali λ spełnia warunki odbicia Bragga.

Przerwy powstają bo istnieją dwa sposoby na to, aby amplituda fali padającej była równa amplitudzie fali odbitej (tworzy się fala stojąca), dla każdej krytycznej wartości k:

$$k = \frac{n\pi}{a}$$

$$\psi = e^{i(\pi/a)x} + e^{-i(\pi/a)x} \propto \cos(\pi x/a)$$
fala padająca fala odbita
$$\psi = e^{i(\pi/a)x} - e^{-i(\pi/a)x} \propto \sin(\pi x/a)$$

Strefy Brillouina

Przypadki:

$$\psi = e^{i(\pi/a)x} + e^{-i(\pi/a)x} \propto \cos(\pi x/a)$$
$$\psi = e^{i(\pi/a)x} - e^{-i(\pi/a)x} \propto \sin(\pi x/a)$$

różnią się ze względu na położenie węzłów fali stojącej a zatem położenia maksimów i minimów gęstości prawdopodobieństwa ψψ^{*}

W pierwszym przypadku (cos $\pi x/a$) gęstość prawdopodobieństwa będzie maksymalna dla x=0, ±a, ±2a...podczas gdy dla drugiego przypadku (sin $\pi x/a$) gęstość prawdopodobieństwa w tych punktach będzie równa 0.

Jeżeli punkty te są położeniami barier pomiędzy jonami to elektron będzie odczuwał większe odpychanie w przypadku drugim czyli będzie miał wyższą energię niż w przypadku pierwszym. Istnieją dwie energie dla tej samej krytycznej liczby falowej k.

Masa efektywna elektronu w krysztale

Ruch elektronu w zewnętrznym polu elektrycznym jest równoważny propagacji paczki fal.

Paczka ta jest utworzona ze stanów leżących w pobliżu dowolnej szczególnej wartości k w pojedynczym paśmie.

Prędkość grupowa tej paczki wynosi:

$$v_g = \frac{d\omega}{dk} = \hbar^{-1} \frac{dE}{dk}$$

Masa efektywna elektronu w krysztale

W obecności zewnętrznego pola elektrycznego na elektron w krysztale działa siła: $\vec{F} = e\vec{\varepsilon} = \hbar \frac{dk}{dt}$

Wyliczamy przyspieszenie jakie

uzyskuje elektron pod wpływem działania siły: $\frac{dv_g}{dt} = \hbar^{-1} \frac{d^2 E}{dkdt} = \hbar^{-1} \frac{d^2 E}{dk^2} \left(\frac{dk}{dt}\right)$

Otrzymujemy:

$$\frac{dv_g}{dt} = \hbar^{-2} \frac{d^2 E}{dk^2} F$$

$$F = \frac{dv_g}{dt}\hbar^2 \left(\frac{d^2E}{dk^2}\right)^{-1}$$

Po przekształceniu:

Masa efektywna elektronu w krysztale

$$F = \frac{dv_g}{dt}\hbar^2 \left(\frac{d^2E}{dk^2}\right)^{-1}$$

Zgodnie z drugą zasadą dynamiki Newtona dostajemy definicję masy efektywnej:

$$m^* = \hbar^2 \left(\frac{d^2 E}{dk^2}\right)^{-1}$$

Masa efektywna m^{*} uwzględnia siły wewnątrz kryształu a zatem potencjał periodyczny, gdyż wyrażenie $\frac{d^2 E}{dk^2}$ zależy od relacji dyspersji, a ta z kolei od charakteru potencjału.

AG H

Masa efektywna

Przykład obliczania masy efektywnej dla elektronu swobodnego.

Dla elektronu swobodnego relacja dyspersji opisana jest wzorem: \hbar^2

$$E = \frac{n}{2m}k^2$$

Stąd:

$$\frac{d^2 E}{dk^2} = \frac{\hbar^2}{m}$$

Korzystając z definicji:
$$m^* = \hbar^2 \left(\frac{d^2 E}{dk^2}\right)^{-1} \implies m^* = m$$

Masa efektywna elektronu w modelu Kroniga-Penneya

Masa efektywna objaśnia reakcję elektronu w krysztale na przyłożone pole elektryczne.

Masa efektywna jest też miarą krzywizny pasma i jest mała gdy E rośnie szybko z k (gęstość poziomów mała)

